This article was downloaded by: On: 28 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK

To cite this Article Varshni, Y. P.(2009) 'Critical temperatures of organic compounds from their boiling points', Physics and Chemistry of Liquids, $47: 4$, $383 - 398$

To link to this Article: DOI: 10.1080/00319100801889522 URL: <http://dx.doi.org/10.1080/00319100801889522>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use:<http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Critical temperatures of organic compounds from their boiling points Y.P. Varshni*

Department of Physics, University of Ottawa, Ottawa, Canada

(Received 23 November 2007; final version received 2 January 2008)

A simple relation between critical temperature (T_c) and boiling point (T_b) is shown to be valid for many organic series. The relation is as follows: $1/T_c = \alpha/T_b + \beta$, where α and β are constants. It has been applied to a total of 24 homologous series and the results for T_c are quite accurate, the average percent error over all the compounds is 0.20%. Predictions are made for critical temperature and boiling point of certain compounds.

Keywords: critical temperature; boiling point; aliphatic series; aromatic series

1. Introduction

The knowledge of critical constants is of fundamental importance for a variety of applications, for example in the application of equations of state or corresponding-states methods. With their help, thermodynamic and volumetric properties and phase conditions can be predicted. Critical properties are required for predicting the vapour pressure or the effect of temperature and pressure on density, on thermal properties, and on transport properties. Van der Waals constants a and b can also be calculated from the critical constants [1]. Critical properties are also involved in the design and operation of many processes which routinely handle fluids at elevated temperatures and pressures. For example, in the supercritical fluid extraction process.

There are difficulties in the accurate experimental measurement of critical constants. For example, the sample has to be of high purity because it is known that critical properties are highly sensitive to even small amount of impurities. Furthermore, the experimental determination of critical constants becomes more difficult as one goes to heavier molecules because thermal decomposition sets in before T_c is reached.

Empirical or semiempirical methods serve to predict the critical constants of organic substances and if the predictions are of high quality for most of the molecules in a homologous series they can also serve to provide an indication of the accuracy of the predicted property of the remaining molecules. Over the years, there have been many attempts to predict the critical temperature of substances. The early work has been summarised by Kobe and Lynn [2] and by Partington [3]. The book by Reid, Prausnitz and Poling [4] gives developments up to the 1980s. The proposed methods for organic compounds can be broadly divided in five categories:

(1) Group contribution methods [5–19]. Most of the methods in this category require T_b . There are two subgroups: (a) The first order group techniques which determine

^{*}Email: ypvsj@uottawa.ca

the molecule by means of simple group contribution, neglecting the next-nearest neighbours effects. (b) The second order group techniques, which additionally take into consideration the influence of first and second-level neighbours of a considered group.

- (2) Correlations with the number of carbon atoms (n) or molecular weight [20–28] or the number of links per molecule [29].
- (3) Correlation with T_b alone [30] or with T_b and n.
- (4) Equation of state correlations [31].
- (5) Zenkevich [32] has recently proposed a new method. He connects T_c of a homologue having *n* carbon atoms with T_c of the preceding member by a linear relation:

$$
T_c(n) = aT_c(n-1) + b,
$$
\n(1)

where a and b are constants. He has also proposed similar relations for various other properties.

Throughout this article all temperatures will be expressed in K.

2. Linear relation for different series

The author had proposed [30] the following simple equation in 1953 for predicting T_c from T_b for alkanes:

$$
1/T_c = \alpha/T_b + \beta,\tag{2}
$$

where α and β are constants. Subsequently, this equation was applied by Ambrose, Cox and Townsend [33] to 15 n- and iso-paraffins and they found that it accurately represents the T_c values of these substances, the differences between T_c (Calcd) and T_c (obs.) being on average only about 0.1% of T_c .

To make the reciprocals in Equation (2) sizable we shall write it as follows

$$
1000/T_c = 1000A/T_b + B,
$$
\n(3)

where A and B are constants.

In 1953, critical temperatures for only some of the other organic series were known. During the last 50 years critical temperatures of a great many organic compounds have been measured. In the present article, we wish to show that the above relation gives fairly accurate values for the critical temperatures of organic compounds of a large number of homologous series.

Owczarek and Blazej [34] have compiled of a set of recommended experimental data on critical temperatures and normal boiling points for aliphatic hydrocarbons. These authors have then used these data to compare seven of the proposed methods. These methods, which are all group contribution methods, are due to Ambrose [5], Joback [7], Fedors [6], Jalowka–Daubert [10–12], Constantinou [17], Somayajulu [14], and Klincewicz [8]. We have extracted data for T_b and T_c for many organic homologous series from Owczarek and Blazej [34] and Lide [35] and these data were used to examine the applicability of Equation (3). Though in many cases data have been taken from Lide's [35] compilation,

Figure 1. 1000/ T_c vs. 1000/ T_b for group numbers 1–4. To avoid overlapping and to accomodate several series in one diagram, series numbers 2–4 have been moved up by amounts (in the ordinate units) given in parenthesis. The labels are as follows. 1: Alkanes, branched alkanes 2A: 2-methylpropane (0.8), 2B: 3-methylpentane (1.6), 2C: 2,2-dimethylpropane (2.4), 3: alkenes (3.2), 4: cycloalkanes (4.0).

when discussing individual compounds we would frequently refer to the original source from which Lide has taken the data.

3. Results and discussion

In Figures 1–6, we show the plots of $1000/T_c$ versus $1000/T_b$ for 16 groups of compounds as follows:

Figure 1. 1: Alkanes, 2: branched alkanes, 3: alkenes and 4: cycloalkanes.

Figure 2. 5: alkanols.

Figure 3. 6: alkyl-benzenes.

Figure 4. 7: alkanones (ketones).

Figure 5. 8: alkanals, 9: ethers, 10: alkanoic acids. 11: acetates and 12: alkylamines.

Figure 6. 13: alkylnitriles, 14: alkylthiols, 15: chloroalkanes and 16: perfluoroalkanes.

It has been known that the first member of a homologous series often does not obey the regularity of later members [23–28,36,37]. Several of the existing correlations often

Figure 2. $1000/T_c$ vs. $1000/T_b$ for Alkanols. To avoid overlapping and to accomodate several series in one diagram, series numbers 5B–5D have been moved up by amounts (in the ordinate units) given in parenthesis. The labels are as follows. 5A: methanol, 5B: 2-propanol (0.4), 5C: 3-pentanol (0.8), 5D: 4-heptanol (1.2).

exclude the first member. A general inspection of the six figures shows that this is also true for some of the series here. In one case (alkanoic acids), the first three members do not follow the straight line. Excluding these cases the rest of the data for each series were treated by the method of least squares to obtain the parameters A and B . The values thus obtained are given in Table 1.

Table 2 presents a detailed numerical comparison between the experimental and calculated values together with the percent errors. For certain molecules for which either the boiling point or the critical temperature was not known, such boiling point or critical temperature has been predicted and such values are labelled with an asterisk. We discuss each series in the following. Sub-series have been identified by the leading member of the series. We then discuss each series individually.

1: Alkanes. Except for methane, there is good agreement between the calculated and experimental values. The average percent error by our method, excluding methane, is 0.22%. It may be compared with the average percent errors as found for some other methods for these compounds which are as follows (in parenthesis): Ambrose (0.29%), Joback (0.46%), Fedors (0.51%), Jalowka–Daubert (2.63%), Constantinou (1.12%), Klincewicz (8.46%), Somayajulu (0.30%). These averages were calculated from the results

Figure 3. 1000/ T_c vs. 1000/ T_b for group number 6: alkyl-benzenes.

given by Owczarek and Blazej [34]. Thus, it is seen that our method gives the least error. A close inspection of the percent errors by our method (Table 2) shows that two of the compounds heneicosane $(C_{21}H_{44})$ and tricosane $(C_{23}H_{48})$ have rather large errors as compared to others. Beyond $C_{10}H_{22}$ the uncertainties in T_c values get progressively larger as one goes to heavier compounds, as these compounds are unstable before T_c is reached. Ambrose and Tsonopoulos [38] give the uncertainty in T_c values of these two compounds as ± 8 K, which may account for the relatively large errors for these compounds.

2: Branched alkanes.

2A: 2-Methylpropane. Except for the first member, the errors are quite small.

2B: 3-Methylpentane. Data for only three members are available and the errors are negligible.

2C: 2,2-Dimethylpropane. Here again the first member is an exception, otherwise the percent errors are quite small.

3: Alkenes. The first member is an exception, otherwise the errors are quite small except for 1-octadecene. The data for this compound are from Owczarek and Blazej [34] who give their source being reference [39]. This reference is, however, not available to us, so we do not know the uncertainty in the T_c of this compound.

4: Cycloalkanes. Here also the first member is an exception, otherwise the percent errors are quite small.

5: Alkanols.

Figure 4. $1000/T_c$ vs. $1000/T_b$ for group number 7: alkanones. To avoid overlapping and to accomodate several series in one diagram, series numbers 7B–7D have been moved up by amounts (in the ordinate units) given in parenthesis. The labels are as follows. 7A: 2-propanone, 7B: 3-pentanone (0.2), 7C: 4-heptanone (0.4), 7D: 5-nonanone (0.6).

5A: Methanol. Except for the first member, the errors in all cases are below 0.5%.

5B: 2-Propanol. The pattern of results is quite similar to that for the Methanol group.

5C: 3-Pentanol. The error for 3-octanol is much larger than for all other alkanols except the first member. This raises the question of the accuracy of T_b and T_c of this compound. Gude and Teja [40] give the uncertainty in the T_c as $\pm 0.5 \text{ K}$, but the uncertainty in T_b is not known.

5D: 4-Heptanol. The errors are negligible.

6: Alkylbenzenes. The first member is seen to be not an exception. For three of the compounds, pentylbenzene, decylbenzene and tridecylbenzene the percent errors are a little on the larger side. Nikitin *et al.* [41] estimate the uncertainty in T_c for compounds heavier than butylbenzene to be from ± 7 to ± 8 K. This easily accounts for the larger errors.

7: Alkanones (Ketones).

Figure 5. 1000/ T_c vs. 1000/ T_b for group numbers 8–12. To avoid overlapping and to accomodate several series in one diagram, series numbers 9–12 have been moved up by amounts (in the ordinate units) given in parenthesis. The labels are as follows. 8: alkanals, 9: ethers (0.2), 10: alkanoic acids (0.6) 11: alkyl acetates (0.8), and 12: alkylamines (1.0).

7A: 2-Propanone. Here also the first member is not an exception. The percent errors for 2-nonanone and 2-decanone are much larger than the rest of the group. Kudchadker et al. [42] estimate the uncertainty in the T_c of 2-nonanone to be ± 0.5 K and that of 2-decanone to be ± 1 K. These uncertainties can only partially account for the errors in these compounds. We do not know the uncertainties in the boiling points of these compounds.

7B: 3-Pentanone. The errors are small except that for 3-decanone. Kudchadker et al. [42] estimate the uncertainty in the T_c of this compound to be ± 1 K. The calculated value of T_c suggests a total uncertainty in T_b and T_c to be about 3.

7C: 4-Heptanone. The errors are small.

7D: 5-Nonanone. Because data for so few compounds of 5-nonanone and 6-undecanone types were available, we have combined 5-nonanone and 6-undecanone groups together. The errors are reasonable.

8: Alkanals. The experimental T_c values given by Lide [35] are from Kudchadker *et al.* [42]. These authors estimate the uncertainties in the experimental values to be about ± 2 K. If we assume the uncertainties in experimental values of T_b to be about ± 1 K, this can easily

Figure 6. 1000/ T_c vs. 1000/ T_b for group numbers 13–16. To avoid overlapping and to accomodate several series in one diagram, series numbers 14–16 have been moved up by amounts (in the ordinate units) given in parenthesis. The labels are as follows. 13: alkylnitriles, 14: alkylthiols (0.2), 15: chloroalkanes (0.4), and 16: perfluoroalkanes (0.6).

lead to about 0.5% uncertainty in the calculated value if the errors are in opposite directions. Bearing this in mind, the percent errors for alkanals are in line with other series.

9: Ethers. The first member is an exception, otherwise the percent errors are quite small.

10: Alkanoic acids. This series is rather different from others in that the first three members of this series do not fall on the linear relation obeyed by the other members of the series. The departure is rather regular. The first member shows the largest error, the second less, and the third least. The errors for higher compounds are small. Interestingly enough, while the critical temperatures of compounds higher than decanoic acid are known, the boiling points seem not to be known. At least in Lide's [35] compilation, which is quite comprehensive and up to date, these are not listed. We have predicted the boiling points of these compounds. The uncertainties in these values, of course, depend on the uncertainty in the T_c of the corresponding compound.

11: Alkyl acetates. The first member is an exception, otherwise the percent errors are quite small.

12: Alkylamines. Here also the first member is an exception, otherwise the percent errors are small.

Table 1. Values of the constants A and B in Equation (3) and the average percent errors for the various groups. Values of A and B are given to a greater number of significant figures than is warranted by experimental data. This has been done merely to preserve consistency with the original data.

Group	Name	A	B	Average percent error
1	Alkanes	0.5169526	0.4636376	0.22
$\overline{2}$	Branched alkanes			
2A	2-Methylpropane	0.4983529	0.5148676	0.12
2B	3-Methylpentane	0.4913189	0.5215551	0.02
2C	2,2-Dimethylpropane	0.4904538	0.5273498	0.08
3	Alkenes	0.5083661	0.4782388	0.24
$\overline{4}$	Cycloalkanes	0.5528384	0.2405996	0.14
5	Alkanols			
5A	Methanol	0.5639873	0.3336600	0.25
5B	2-Propanol	0.5970890	0.2628420	0.12
5C	3-Pentanol	0.5630524	0.3377034	0.32
5D	4-Heptanol	0.5846012	0.2972209	0.09
6	Alkylbenzenes	0.4243016	0.5860827	0.27
7	Alkanones			
7A	2-Propanone	0.4860883	0.4890435	0.16
7B	3-Pentanone	0.4891153	0.4806674	0.26
7C	4-Heptanone	0.4760469	0.5167753	0.19
7D	5-Nonanone	0.5126447	0.4446994	0.33
8	Alkanals	0.4891321	0.4666619	0.21
9	Ethers	0.5176184	0.4405678	0.10
10	Alkanoic acids	0.5572453	0.3540011	0.26
11	Alkyl acetates	0.4877434	0.5173494	0.10
12	Alkylamines	0.5260090	0.3750923	0.16
13	Alkylnitriles	0.4882635	0.4609079	0.11
14	Alkylthiols	0.4472919	0.5516050	0.05
15	Chloroalkanes	0.4677549	0.5267047	0.17
16	Perfluoroalkanes	0.5666965	0.4998266	0.33
$1 + 2 + 3$	$Alkanes + Branched$ alkanes + Alkenes	0.5174243	0.4595265	0.36

13: Alkylnitriles. The first member is not an exception and the percent errors are quite small.

14: Alkylthiols. Here also the first member is an exception, otherwise the percent errors are negligible.

15: Chloroalkanes. The first member is in line with others, but 1-chloroheptane shows a very large error. The experimental value of T_c for this compound is due to Morton *et al.* [43] who estimate its uncertainty to be ± 6 K. This would, for the most part, explain the error.

16: Perfluoroalkanes. In this series the first member is not an exception. Three compounds, perfluoroheptane, perfluorononane and perfluorodecane show rather large errors as compared to others in the series. We believe part of these errors is due to uncertainties in T_c .

The average percent error, excluding the percent errors in parenthesis, for each series is shown in the last column of Table 1. The overall average percent error is 0.20%. Our method gives results of high accuracy, probably the highest amongst all other

Table 2. Experimental values of T_b and T_c together with calculated values of T_c and the corresponding percent errors. For certain molecules for which either the boiling point or the critical temperature was not known, such boiling point or critical temperature has been predicted and such values are labelled with an asterisk. All temperatures are in K.

Group	Formula	Name	T_b obs.	T_c obs.	T_c calcd.	Percent error
$\mathbf{1}$	Alkanes					
	CH_4	Methane	111.63	190.55	196.29	(3.01)
	C_2H_6	Ethane	184.55	305.42	306.30	0.29
	C_3H_8	Propane	231.05	369.82	370.23	0.11
	C_4H_{10}	Butane	272.70	425.16	423.85	-0.31
	C_5H_{12}	Pentane	309.21	469.70	468.28	-0.30
	C_6H_{14}	Hexane	341.88	507.60	506.14	-0.29
	C_7H_{16}	Heptane	371.57	540.30	539.11	-0.22
	C_8H_{18}	Octane	398.82	568.83	568.23	-0.11
	C_9H_{20}	Nonane	423.96	594.70	594.18	-0.09
	$C_{10}H_{22}$	Decane	447.30	617.70	617.53	-0.03
	$C_{11}H_{24}$	Undecane	469.08	638.80	638.69	-0.02
	$C_{12}H_{26}$	Dodecane	489.47	658.25	657.99	-0.04
	$C_{13}H_{28}$	Tridecane	508.60	675.80	675.65	-0.02
	$C_{14}H_{30}$	Tetradecane	526.70	694.15	691.98	-0.31
	$C_{15}H_{32}$	Pentadecane	543.83	707.00	707.11	0.01
	$C_{16}H_{34}$	Hexadecane	560.01	722.00	721.11	-0.12
	$C_{17}H_{36}$	Heptadecane	574.25	736.00	733.21	-0.38
	$C_{18}H_{38}$	Octadecane	590.22	745.80	746.55	0.10
	$C_{19}H_{40}$	Nonadecane	603.00	755.00	757.04	0.27
	$C_{20}H_{42}$	Eicosane	617.00	768.00	768.35	0.05
	$C_{21}H_{44}$	Heneicosane	636.05	777.60	783.46	0.75
	$C_{22}H_{46}$	Docosane	641.80	785.60	787.95	0.30
	$C_{23}H_{48}$	Tricosane	653.00	790.00	796.63	0.84
	$C_{24}H_{50}$	Tetracosane	661.70	802.50	803.29	0.10
	$C_{25}H_{52}$	Pentacosane	676.70	816.90	814.62	-0.28
$\overline{2}$	Branched alkanes					
2A	2-Methylpropane					
	C_4H_{10}	2-Methylpropane	261.42	407.80	413.02	(1.28)
	C_5H_{12}	2-Methylbutane	301.00	460.40	460.72	0.07
	C_6H_{14}	2-Methylpentane	333.41	497.70	497.62	-0.02
	C_7H_{16}	2-Methylhexane	363.15	530.40	529.89	-0.10
	C_8H_{18}	2-Methylheptane	390.80	559.70	558.63	-0.19
	C_9H_{20}	2-Methyloctane	416.43	582.87	584.25	0.24
	$C_{10}H_{22}$	2-Methylnonane	440.20		$607.2*$	
2B	3-Methylpentane					
	C_6H_{14}	3-Methylpentane	336.41	504.60	504.53	-0.01
	C_7H_{16}	3-Methylhexane	364.99	535.26	535.43	0.03
	C_8H_{18}	3-Methylheptane	392.09	563.60	563.50	-0.02
2C	2,2-Dimethylpropane					
	C_5H_{12}	2,2-Dimethylpropane	282.65	433.75	441.98	(1.90)
	C_8H_{18}	2,2-Dimethylhexane	380.00	549.80	550.05	0.05
	C_6H_{14}	2,2-Dimethylbutane	322.88	489.00	488.68	-0.07
	C_7H_{16}	2,2-Dimethylpentane	352.35	520.50	521.02	0.10
	C_9H_{20}	2,2-Dimethylheptane	405.99	576.70	576.24	-0.08
3	Alkenes					
	C_2H_4	Ethylene	169.25	282.34	287.20	(1.72)

(continued)

(continued)

Downloaded At: 07:29 28 January 2011 Downloaded At: 07:29 28 January 2011

(continued)

Group	Formula	Name	T_b obs.	T_c obs.	T_c calcd.	Percent error
	$C_{18}H_{36}O_2$ $C_{20}H_{40}O_2$ $C_{22}H_{44}O_2$	Octadecanoic acid Eicosanoic acid Docosanoic acid	$625.2*$ $643.8*$ 662.8*	803.00 820.00 837.00		
11	Alkyl acetates $C_3H_6O_2$ $C_4H_8O_2$ $C_5H_{10}O_2$ $C_6H_{12}O_2$ $C_7H_{14}O_2$ $C_8H_{16}O_2$	Methyl-acetate Ethyl-acetate Propyl-acetate Butyl-acetate Pentyl-acetate Hexyl-acetate	330.02 350.26 374.69 399.30 422.40 444.70	506.50 523.30 549.70 575.60 599.00 618.40	501.19 523.60 549.73 575.09 598.07 619.52	(-1.05) 0.06 0.01 -0.09 -0.16 0.18
12	Alkylamines CH ₅ N C_2H_7N C_3H_9N $C_4H_{11}N$ $C_6H_{15}N$	Methylamine Ethylamine Propylamine Butylamine Hexylamine	266.83 289.70 320.37 350.15 402.00	430.70 456.00 497.00 531.90	426.18 456.46 495.79 532.67 594.0*	(-1.05) 0.10 -0.24 0.14
13	Alkylnitriles C_2H_3N C_3H_5N C_4H_7N C_5H_9N $C_6H_{11}N$ $C_8H_{15}N$	Acetonitrile Propanenitrile Butanenitrile Pentanenitrile Hexanenitrile Octanenitrile	354.80 370.29 390.80 414.50 436.80 478.40	545.60 561.30 585.40 610.30 633.80 674.40	544.34 561.95 584.69 610.18 633.42 674.98	-0.23 0.12 -0.12 -0.02 -0.06 0.09
14	Alkylthiols CH_4S C_2H_6S C_3H_8S $C_4H_{10}S$ $C_8H_{18}S$	Methanethiol Ethanethiol 1-Propanethiol 1-Butanethiol 1-Octanethiol	279.10 308.20 341.00 371.70 472.30	470.00 499.00 537.00 570.00 667.00	464.20 499.27 536.68 569.81 667.26	(-1.23) 0.05 -0.06 -0.03 0.04
15	Chloroalkanes CH ₃ Cl C_2H_5Cl C_3H_7Cl C_4H_9Cl $C_5H_{11}Cl$ $C_6H_{13}Cl$ $C_7H_{15}Cl$ $C_8H_{17}Cl$	Chloromethane Chloroethane 1-Chloropropane 1-Chlorobutane 1-Chloropentane 1-Chlorohexane 1-Chloroheptane 1-Chlorooctane	249.06 285.50 319.70 351.60 381.60 408.30 433.60 456.70	416.25 460.40 503.00 539.20 571.20 599.00 614.00 643.00	415.84 461.88 502.56 538.48 570.62 597.97 622.87 644.78	-0.10 0.32 -0.09 -0.13 -0.10 -0.17 (1.44) 0.28
16	Perfluoroalkanes CF_4 C_2F_6 C_3F_8 C_4F_{10} C_5F_{12} C_6F_{14} C_7F_{16} C_8F_{18} C_9F_{20} $C_{10}F_{22}$	Tetrafluoromethane Hexafluoroethane Perfluoropropane Perfluorobutane Perfluoropentane Perfluorohexane Perfluoroheptane Perfluorooctane Perfluorononane Perfluorodecane	145.20 195.10 236.60 271.30 302.40 329.80 355.70 379.10 398.50 417.40	227.60 293.00 345.10 386.40 420.59 448.77 474.80 502.00 524.00 542.00	227.13 293.73 345.42 386.30 421.26 450.83 477.78 501.34 520.32 538.36	-0.20 0.25 0.09 -0.03 0.16 0.46 0.63 -0.13 -0.70 -0.67

Table 2. Continued.

Figure 7. $1000/T_c$ vs. $1000/T_b$ for alkanes, branched alkanes and alkenes all taken together.

methods which are available. It has the simplicity of requiring only the boiling point of a compound, though of course it has the limitation that T_b and T_c should be known for at least two members of the same series. To a certain extent this limitation can be reduced if we combine together similar homologous series. We illustrate this method by taking together all members of series numbers 1, 2 and 3, that is, alkanes, branched alkanes and alkenes. In Figure 7, we show the result. It will be noticed that it still gives a fairly good straight line, but the errors are a little higher, the average percent error is now 0.36%, as compared to 0.20%, when the various series are considered separately. These errors have been calculated excluding the compounds whose errors are shown in parenthesis in Table 2.

Most of the group contribution methods require a knowledge of the boiling points and sometimes their use requires a large number of data for various types of groups, for example, Somayajulu's method [15] has no less than 144 types of groups for organic compounds.

References

- [1] J.G. Eberhart, J. Chem. Educ. 66, 906 (1989); 69, 220 (1992).
- [2] K.A. Kobe and R.E. Lynn Jr, Chem. Rev. 52, 117 (1953).
- [3] J.R. Partington, An Advanced Treatise on Physical Chemistry (Longmans, Green and Co., London 1949, 1951), Vols. 1, 2.
- [4] R.C. Reid, J.M. Prausnitz, and B.E. Poling, *The Properties of Gases, Liquids*, 4th ed. (McGraw-Hill, New York, 1989), pp. 656–732.
- [5] D. Ambrose, Correlation, Estimation of Vapor-Liquid Critical Properties. 1. Critical Temperatures of Organic Compounds, National Physical Laboratory, Teddington, NPL Rep. Chem. 92, September 1978, corrected March 1980.
- [6] R.F. Fedors, Chem. Eng. Commun. 16, 149 (1982).
- [7] K.G. Joback. S.M. Thesis, Massachusetts Institute of Technology, Cambridge, MA, June 1984.
- [8] K.M. Klincewicz and R.C. Reid, AIChE J. 30, 137 (1984).
- [9] C.H. Twu, Fluid Phase Equilibria 16, 137 (1984).
- [10] J.W. Jalowka and T.E. Daubert, Ind. Eng. Chem. Process Des. Dev. 25, 139 (1986).
- [11] T.E. Daubert and R. Bartakovits, Ind. Eng. Chem. Res. 28, 638 (1989).
- [12] T.E. Daubert, J. Chem. Eng. Data 41, 365 (1996).
- [13] D.V.S. Jain and S. Singh, Indian J. Chem. A 24, 545 (1985).
- [14] G.R. Somayajulu, J. Chem. Eng. Data 34, 106 (1989).
- [15] S. Grigoras, J. Comput. Chem. 11, 493 (1990).
- [16] J.S. Murray, P. Lane, T. Brinck, K. Paulsen, M.E. Grice, and P. Politzer, J. Phys. Chem. 97, 9369 (1993).
- [17] L. Constantinou and R. Gani, AIChE J. 40, 1666 (1994).
- [18] S. Bhattacharjee and P. Dasgupta, Comput. Chem. 18, 61 (1994).
- [19] L.M. Egolf, M.D. Wessel, and P.C. Jurs, J. Chem. Inf. Comp. Sci. 34, 947 (1994).
- [20] A. Kreglewski and B.J. Zwolinski, J. Phys. Chem. 65, 1050 (1961).
- [21] C. Mathur and N.K. Kuloor, J. Indian Inst. Sci. **52**, 69 (1970).
- [22] A.L. Horvath, ASHRAE J. 14, 46 (1972).
- [23] C. Tsonopoulos, AIChE J. 33, 2080 (1987).
- [24] A.S. Teja, R.J. Lee, D. Rosenthal, and M. Anselmeet, Fluid Phase Equilibria 56, 153 (1990).
- [25] C. Tsonopoulos and Z. Tan, Fluid Phase Equilibria 83, 127 (1993).
- [26] E.D. Nikitin, P.A. Pavlov, and P.V. Skripov, Int. J. Thermophys. 17, 456 (1996).
- [27] E.D. Nikitin, P.A. Pavlov, and A.P. Popov, Fluid Phase Equilibria 141, 155 (1997).
- [28] J. Amors, Phys. Chem. Liquids 40, 269 (2002).
- [29] N.S. Bogatishcheva and E.D. Nikitin, High Temperature 43, 186 (2005).
- [30] Y.P. Varshni, J. Chem. Phys 21, 2235 (1953).
- [31] A.E. Elhassan, M.A. Barrufet, and P.T. Eubank, Fluid Phase Equilibria 78, 139 (1992).
- [32] I.G. Zenkevich, Russ. J. Org. Chem. 42, 1 (2006).
- [33] D. Ambrose, J.D. Cox, and R. Townsend, Trans. Faraday Soc. 56, 452 (1960).
- [34] I. Owczarek and K. Blazej, J. Phys. Chem. Ref. Data 32, 1411 (2003).
- [35] D.R. Lide, editor, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, USA).
- [36] G. Egloff, J. Sherman, and R.B. Dull, J. Phys. Chem. 44, 730 (1940).
- [37] R.C. Mebane, C.D. Williams, and T.R. Rybolt, Fluid Phase Equilibria 124, 111 (1996).
- [38] D. Ambrose and C. Tsonopoulos, J. Chem. Eng. Data 40, 531 (1995).
- [39] Thermodynamics Data Center, the Institute of Coal Chemistry and the Institute of Physical-Chemistry, Warsaw, of the Polish Academy of Sciences, Poland.
- [40] M. Gude and A.S. Teja, J. Chem. Eng. Data 40, 1025 (1995).
- [41] E.D. Nikitin, A.P. Popov, N.S. Bogatishcheva, and Y.G. Yatluk, J. Chem. Eng. Data 47, 1012 (2002).
- [42] A.P. Kudchadker, D. Ambrose, and C. Tsonopoulos., J. Chem. Eng. Data 46, 457 (2001).
- [43] D.W. Morton, M.P.W. Lui, C.A. Tran, and C.L. Young, J. Chem. Eng. Data 45, 437 (2000).